Perkins

4016TAG1A

4016TAG2A

Technical Data 4000 Series

Diesel Engine - Electrounit

Basic technical data

Number of cylinders
Cylinder arrangement
Cycle
Induction system
Compression ratio
Bore
Stroke
Cubic capacity
Direction of rotation Anti-clockwise viewed on flywheel Firing order 1 ^A ,1 ^B ,3 ^A ,3 ^B ,7 ^A ,7 ^B ,5 ^A ,5 ^B ,8 ^A ,8 ^B ,6 ^A ,6 ^B ,2 ^A ,2 ^B ,4 ^A ,4 ^B
Cylinder 1 furthest from flywheel
Cylinders designated 'A' are on the left side of the engine
when viewed from the front (opposite end to flywheel)
Total weight Electrounit (engine only) (dry) 5570 kg
Overall dimensions Height 2128 mm
Width 1723 mm
Moment of inertia In International Internationae Internationae Internationae Internationae Int

Cyclic irregularity for engine/flywheel (Prime power): 4016TAG1A ... 1500 rev/min 1,300 4016TAG2A ... 1500 rev/min 1,277

Ratings

Steady state speed stability at constant load ± 0,25% Electrical ratings are based on average alternator efficiency and are for guidance only (0,8 power factor being used).

Operating point

Engine speed
Static injection timing see engine number plate
Cooling water exit temperature

Fuel data

To conform to BS2869 class A1, A2.

Performance

Estimated sound pressure level 1500 rev/min 106/112dBA Note: All data based on operation to ISO 3046/1, BS 5514 and DIN 6271 standard reference conditions.

Test conditions

Air temperature
Barometric pressure
Relative humidity
Air inlet restriction at maximum power (nominal) 2,5 kPa
Exhaust back pressure (nominal)

		50Hz	1
Designation	Units	Continuous Baseload	1
Gross engine power	kWb	1270	1
			-

General installation 4016TAG1A

		50Hz 1500 rev/min			60Hz 1800 rev/min		
Designation	Units	Continuous Baseload	Prime Power	Standby Maximum	Continuous Baseload	Prime Power	Standby Maximum
Gross engine power	kWb	1270	1588	1741	-	-	-
Fan power	kWm		51	•	-	-	-
Net engine power	kWm	1219	1537	1690	-	-	-
BMEP gross	bar	16,6	20,8	22,8	-	-	-
Combustion air flow	m ³ /min	107	132	140	-	-	-
Exhaust gas temperature max (after turbo)	°C	400		439	-	-	-
Exhaust gas flow max (after turbo)	m ³ /min	252		343	-	-	-
Boost pressure ratio max (after turbo)	-	3,0	3,30	3,50	-	-	-
Mechanical efficiency	%	88	91	92	-	-	-
Overall thermal efficiency	%	41	41	41	-	-	-
Friction power and pumping losses	kWm		160		-	-	-
Mean piston speed	m/s		9,5		-	-	-
Engine coolant flow (min)	l/s		19		-	-	-
Typical Genset Electrical Output	kVA	1463	1844	2028	-	-	-
0,8 pf 25 °C (100 kPa)	kWe	1170	1476	1622	-	-	-
Assumed alternator efficiency	%		96		-	-	-

General installation 4016TAG2A

		50Hz	60Hz	1800 rev/	min		
Designation	Units	Continuous Baseload	Prime Power	Standby Maximum	Continuous Baseload	Prime Power	Standby Maximum
Gross engine power	kWb	1413	1766	1937	-	-	-
Fan power	kWm		51	•	-	-	-
Net engine power	kWm	1362	1715	1886	-	-	-
BMEP gross	bar	18,5	23,1	25,4	-	-	-
Combustion air flow	m ³ /min	117	137	145	-	-	-
Exhaust gas temperature max (after turbo)	°C	450		493	-	-	-
Exhaust gas flow (max)	m ³ /min	275		387		-	-
Boost pressure ratio	-	3,0	3,49	3,80	-	-	-
Mechanical efficiency	%	88	92	92	-	-	-
Overall electrical efficiency	%	41	40	40	-	-	-
Friction power and pumping losses	kWm	-	160		-	-	-
Mean piston speed	m/s		9,5			-	-
Engine coolant flow (min)	l/s		19		-	-	
Typical Genset Electrical Output	kVA	1634	2058	2263	-	-	-
0,8 pf 25 °C (100 kPa)	kWe	1307	1646	1811	-	-	-
Assumed alternator efficiency	%		96		-	-	-

Note: Not to be used for CHP design purposes. (Indicative figures only). Consult Perkins Engines Co. Ltd. Assumes complete combustion.

Prime Power rating is available for unlimited hours per year with a variable load of which the average engine load factor is 80% of the published prime power rating. **Standby Power rating** is for the supply of emergency power at variable load for the duration of the non-availability of the mains power supply. NO OVERLOAD capacity is available at this rating. Engines must not be allowed to have facilities for parallel operation with the mains supply. This rating should be applied only when reliable mains power is available. Should this not be the case then refer to Prime Power rating. A standby rated engine should be sized for an average load factor of 80% based on published standby rating for 500 operating hours per year. Standby ratings should never be applied except in true emergency power failure conditions.

On 16 cylinder engines used for baseload operation, the following items must be incorporated:

- 1. Auto lubricating oil pump (extra price, see options).
- 2. Centrifugal by-pass filter to be baseframe mounted (extra price, see options).
- 3. Electrically driven radiators on separate baseframe (customer supply).
- 4. Start/stop sequence as follows:
- START 4 minutes priming. 2 minutes start and no load 1500 rev/min. Synchronise and ramp to full load over 3 minutes.
- STOP -Ramp down to no load 1500 rev/min.5 minutes no load and running.Stop engine and run oil priming pump for 4 minutes.

Energy balance

Note: Not to be used for CHP design purposes. (Indicative figures only). Consult Perkins Engines Co Ltd. Assumes complete combustion. 4016TAG1A

1500 rev/min 1800 rev/min Units Continuous Prime Standby Continuous Standby Prime Maximum Maximum Baseload Baseload Power Power kWt 3106 3846 4297 Energy in fuel ---Energy in power output (gross) kWb 1270 1588 1741 ---Energy to cooling fan kWm 51 51 51 ---Energy in power output (net) kWm 1219 1537 1690 ---Energy to exhaust kWt 947 1079 1276 ---Energy to coolant and oil 480 kWt 586 629 ---Energy to radiation 103 kWt 58 107 ---Energy to charge coolers 363 kWt 490 544 ---

4016TAG2A

		1500 rev/min			18		
	Units	Continuous Baseload	Prime Power	Standby Maximum	Continuous Baseload	Prime Power	Standby Maximum
Energy in fuel	kWt	3466	4361	4908	-	-	-
Energy in power output (gross)	kWb	1413	1766	1937	-	-	-
Energy to cooling fan	kWm	51	51	51	-	-	-
Energy in power output (net)	kWm	1362	1716	1886	-	-	-
Energy to exhaust	kWt	1048	1245	1490	-	-	-
Energy to coolant and oil	kWt	517	660	721	-	-	-
Energy to radiation	kWt	68	130	150	-	-	-
Energy to charge coolers	kWt	420	560	610	-	-	-

Cooling system

Recommended coolant: 50% inhibited ethylene glycol or 50% inhibited propylene glycol and 50% clean fresh water. For combined heat and power systems and where there is no likelihood of ambient temperatures below 10 °C then clean 'soft' water may be used, treated with 1% by volume of Perkins inhibitor in the cooling system. The inhibitor is available in bottles under Perkins Part No. 21825 735.

The following is a guide based on ambient air conditions of 52 °C on a Perkins supplied radiator.

Total coolant capacity:

Fan. Incorporated in radiator Ambient cooling clearance (open ElectropaK Prime power) based on air temperature at fan 3 °C above ambient.

4016TAG1A

Maximum additional restriction (duct allowance) to cooling airflow (Prime power) and resultant minimum airflow							
Ambient clearanceDuct allowanceMin airflow50% glycolmm H20m³/min							
rev	rev/min		'min	rev/	min		
1500	1800	1500 1800		1500	1800		
52 °C	-	17	-	2394	-		

4016TAG2A

Maximum additional restriction (duct allowance) to cooling airflow (Prime power) and resultant minimum airflow

	clearance glycol	Duct allowance mm H ₂ 0		Min ai m ³ /ı				
rev	rev/min		rev/min		min			
1500	1800	1500	1800	1500	1800			
52 °C	-	15	-	2430	-			

Coolant pump speed and

method of drive 1,4 x e rev/min gear driven Maximum static pressure head on pump

above engine crank centre line 7 m Maximum external permissible restriction

Shutdown switch setting 101 °C rising Coolant immersion heater capacity 4 kW x 2

Jacket cooling water data	Units	1500 rev/min	1800 rev/min
Coolant flow	l/s	19	-
Coolant exit temperature (max)	°C	98	-
Coolant entry temperature (min)	°C	70	-
Coolant entry temperature (max)	°C	80	-

Lubrication system

Recommended lubricating oil to conform with the specification of API CG4 15W/40.

Lubricating oil capacity:

Sump maximum	
Sump minimum	
Lubricating oil temperature maximum to bearings 105 °C	
Lubricating oil pressure	

at 80 °C temperature to bearing gallery (minimum) 0,34 MPa

Oil consumption	Units	1500 rev/min 4016TAG1A	1500 rev/min 4016TAG2A
After running-in*	g/kWhr	0,50	0,52
Oil flow rate from pump	l/s	6,70	6,70
Oil flow rate from pump	I/S	6,70	6,70

Typical after 250 hours

Sump drain plug tapping size	G1
Oil pump speed and method of drive 1,4 x e rev/min, gear driv	/en
Oil pump flow 1500 rev/min	sec
Shutdown switch setting 1,93 bar fall	ing
Normal operating angles	
Fore and aft	5°
Side tilt	10°

~ .

Fuel system

Recommended fuel To conform to BS2869 1998 Class A1, A2
Type of injection system Direct injection
Fuel injection pump Combined unit injector
Fuel injector Combined unit injector
Fuel injector opening pressure
Fuel lift pump
Delivery/hour at 1500 rev/min
Delivery/hour at 1800 rev/min
Heat retained in fuel to tank
Temperature of fuel at lift pump to be less than
Fuel lift pump pressure
Fuel lift pump maximum suction head
Fuel lift pump maximum pressure head (see Installation Manual)
Fuel filter spacing 10 microns
Governor type Electronic
Torque at the governor output shaft 1,631 kgm
Static injection timing See engine number plate
Tolerance on fuel consumption To ISO 8528-1 1993

4016TAG1A

Fuel consumption (gross)						
Designation	g/kWh		Litre	es/hr		
rev/min	1500 1800		1500	1800		
At Standby Max power rating	207	-	424	-		
At Prime Power rating	205	-	383	-		
At Continuous Baseload rating	199	-	297	-		
At 75% of Prime Power rating	198	-	277	-		
At 50% of Prime Power rating	198	-	185	-		
At 25% of Prime Power rating	218	-	102	-		

4016TAG2A

Fuel consumption (gross)						
Designation	g/kWh		Litre	es/hr		
rev/min	1500 1800		1500	1800		
At Standby Max power rating	212	-	483	-		
At Prime Power rating	209	-	434	-		
At Continuous Baseload rating	205	-	341	-		
At 75% of Prime Power rating	203	-	316	-		
At 50% of Prime Power rating	202	-	210	-		
At 25% of Prime Power rating	212	-	110	-		

Induction system

Maximum air intake restriction of engine:

Clean filter
Dirty filter
Air filter type MF&T 5000-00-00

Exhaust system

Maximum back pressure for total system.

Designation	Units	1500 rev/min	1800 rev/min
4016TAG1A	mm H ₂ 0	949	-
4016TAG2A	mm H ₂ 0	673	-

Exhaust outlet flange size 2×254 mm (table 'D') For recommended pipe sizes, refer to the Installation Manual.

Electrical system

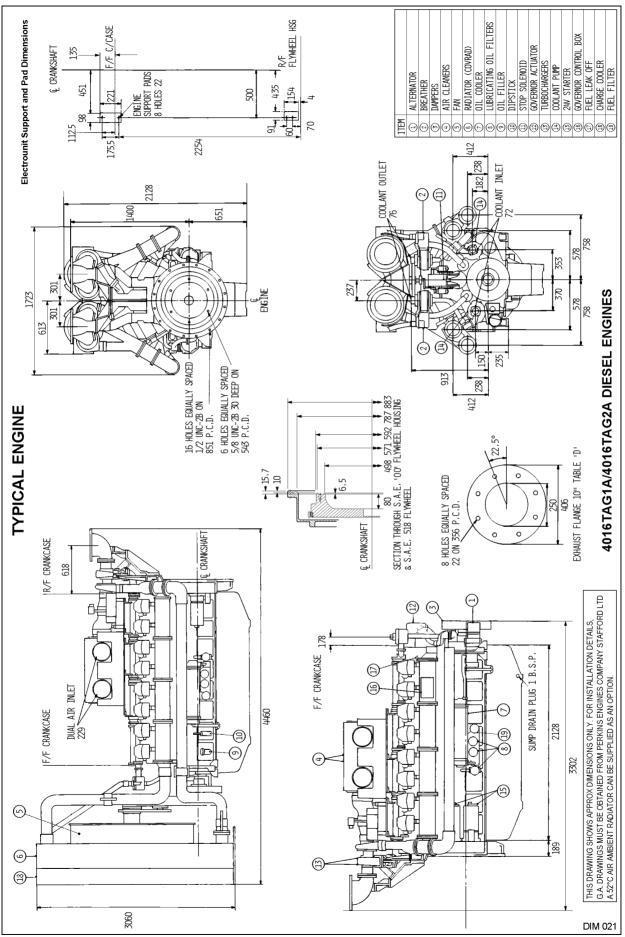
Type Insulated return Alternator..... 24 volts with integral regulator Alternator output 40 amps at a stabilised output 28 volts at 20 °C ambient

Starter motor
Starter motor power
Number of teeth on flywheel
Number of teeth on starter motor
Minimum cranking speed at (0 °C) 120 rev/min
Pull-in current of each starter motor solenoid

Hold-in current of each starter motor solenoid each

	9 amps at 24 volts
Engine stop solenoid	24 volts
Pull-in current of stop solenoid	60 amps at 24 volts
Hold-in current of stop solenoid	1,1 amps at 24 volts

Engine mounting


Starting requirements

Temperature range		
	Oil:	API CG4 15W/40
	Starter:	2 x 24V
Range	Battery:	4 x 12 volts x 286 Ah
Down to 0 °C	Max breakaway current:	2000 amps
(32 °F)	Cranking current:	957 amps
(32 F)	Aids:	Not necessary
	Starter cable size:	120 mm ²
	Maximum length:	6 m

Notes:

- Battery capacity is defined by the 20 hour rate at 0 °C.
- The oil specification should be for the minimum ambient temperature as the oil will not be warmed by the immersion heater.
- Breakaway current is dependent on battery capacity available. Cables should be capable of handling the transient current which may be up to double the steady cranking current.

GA Drawing

Load acceptance (cold)

4016TAG1A 1500 rev/min

Initial load application when engine reaches rated speed (15 seconds max after engine starts to crank)			2 nd Load application Immediately after engine has recovered to rate (5 seconds after initial load application		•		
Prime power	Load kWm/kWe	Transient frequency	Frequency recovery	Prime power	Load kWm/kWe	Transient frequency	Frequency recovery
%		deviation %	time seconds	%		deviation %	time seconds
67	1031/990	<u><</u> -10	5	33	506/486	<u><</u> -10	5

4016TAG2A

1500 rev/min

when engine reaches rated speed Immediately after engin			when engine reaches rated speed		2 nd Load a ly after engine ha seconds after init	as recovered to ra	
Prime power %	Load kWm/kWe	Transient frequency deviation %	Frequency recovery time seconds	Prime power %	Load kWm/kWe	Transient frequency deviation %	Frequency recovery time seconds
57	977/938	<u><</u> -10	5	43	738/708	<u><</u> -10	5

Above complies with requirements of Classifications 3 & 4 of ISO 8528-12 and G2 operating limits stated in ISO 8528-5. The above figures were obtained under test conditions as follows:

Engine block temperature 45 °C

Minimum ambient temperature 10 °C

Isochronous Governing

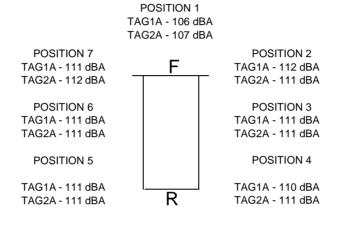
Under Frequency Roll Off (UFRO) set to 1 Hz below rated frequency

Typical alternator inertia 50 Kgm²

All tests were conducted using an engine which was installed and serviced to Perkins Engines Company Limited recommendations.

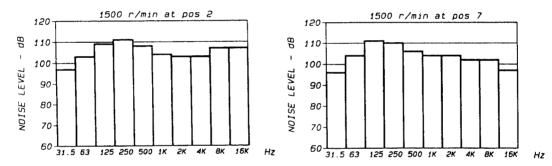
4016TAG1A 4016TAG2A

Noise level


The figures for total noise levels are typical for an engine running at Prime Power rating in a semi-reverberant environment and measured at a distance of one metre from the periphery of the engine.

Octave analysis

The following histograms show an octave band analysis at the position of the maximum noise level.


Total noise level

Sound pressure level re: -20 x 10⁻⁶ pa Speed 1500 r/min.....Ambient noise level 75 dBA. Octave analysis performed at the position of maximum noise.

4016TAG1A

4016TAG2A

The information given on technical data sheets are for standard ratings only. For ratings other than shown contact Perkins Engines Company Limited, Stafford.

Notes

Perkins Engines Company Limited

Stafford ST16 3UB United Kingdom Telephone +44 (0)1785 223141 Fax +44 (0)1785 215110 www.perkins.com Distributed by